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Abstract
This research is concerned with the problem of Stabilization and Optimization of Neural
Networks. The stability problem is solved by applying a Lypunov functional, and an improved
delay-dependent stability criterion is obtained in terms of a linear matrix inequality. Based on
this, a sufficient condition for stabilization of the system is presented. The reduced conservatism

of the proposed stability result is shown through numerical examples.

Key words: Neural Networks, Stabilization, Optimization
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INTRODUCTION

A recurrent neural network (RNNs) 1s a very
important tool for many application areas such as
associative  memory. - pattern = recognition. signal
processing. model 1dentication and combinatorial
Dptmuzatmu With the development of research on
RINNs in theory and application. the model 1s more and
more complex. Parameter uncertammties and
nonautonomous phenomena often exist in real systems
due to modeling maccuracies [1. 2]. Particularly when
we consider a longterm dynamical behawvior of the
systemm and- consider seasonality of the changing
environment. the parameters of the system usually will -
change with tune [3. 4].  Simultancously. in
implementations of artificial neural mnetworks, time
delay may occur due to finmite switching speeds of the
amplifiers and commmunication tme [5. 6]. In order to
model those systems with neural networks. the neural O
networks with time-varying delay appear i many
papers [7. 8]. So in this paper we consider the stability
of the following discrete-time recwrent neural
networks:




In this paper. we consider control discrete-time
system of neural networks of the form
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A+ =Cv(h)+ AS(v(k)) + BS(v(k—h(k)))

+Du(rk)+ f. (1)

where v(k)eQcR" 1s the neuron state wvector.
0<hy, =h(k)=h,.Tk=012... C =diagic,.....c,}.

c,=z0. i=L2..n 1s the nxn constant relaxation
matrix. 4. B are the nxn constant weight matrix. D 1s
nxm constant matmx. w(k)R"™ 1s the control
vector. f =(f..... f, ) =R" 1s the constant external mnput

vector and TN )1 with =

s, € C|R.(-1.1)] where s, is the neuron activations and




The asymptotic stability of the zero solution of the
delay-differential system of Hopfield neural networks
has been developed during the past several years. Much
less 1s known regarding the asymptotic stability of the
zero solution of the control discrete-time system of
neural networks. Therefore. the purpose of this paper 1s
to establish sufficient condition for the asymptotic
stability of the zero solution of (1) m terms of certain

matrix mnequalities.

*-

&




PRELIMINARIES

The following notations will be used throughout the
paper. &~ denotes the set of all non-negative real
numbers: Z* denotes the set of all non-negative
integers: R" denotes the n-fimte-dimensional Euclidean
space with the Euclidean norm ||| and the scalar product

between x and y is defined by x" y: R™™ denotes the r
set of all (mxm) -matrices; and 4" denotes the
transpose of the matrix 4: Matrx O e R™™ 1s positive =

semidefinite (Q = 0) if x' Ox =0, forallxeR".

Bl i

r



If x' Ox > 0(x' Qx < 0, resp.) for any x=0. then Q is
positive (negative, resp.) definite and denoted by
0=0(0<0, resp). It.1s easy to verify that @ >0,

(Q <0, resp.)
Iff 36> 0: x"Ox > Bl . vxe R®,

Iff 38>0: x's "t YreR™

|| . Vx eR". resp.) .




Lemma 1. [1] The zero solution of difference system 1s
asymptotic stability if there exists a positive definite

function V(x): R" — R~ such that

5
=
i

38 > 0: AV(x(k)) =V (x(k+ 1) - V(x(k)) < —B|x(k)

along the solution of the system. In case the above
condition holds for all x(k) <7, . we say that the zero

solution 1s asymptotically stable.




MAIN RESULTS

In this section. we consider the sufficient condition

for asymptotic stability of the zero solution v of (1) in
terms of certamn matrix imequalities. Without loss of

generality. we can assume that v* =0.5(0) =0 and f =

0 (for otherwise, we let x=v—» and define

S(x) = S(x 4+ v TN |
‘ iy




The new form of (1) 1s now given by

x(k +1) = Cx(k) + AS(x(k)) + BS(x(k — h(k)))

+ Du(k). @

This is a basic requirement for controller design. Now,
we are interested designing a feedback controller for the
system (2) as

ulk) = Kx(k). ' _

where K 1s nxm constant confrol gain matrix.




The new form of (2) 1s now given by

x(k+1) = Cx(k)+ AS(x(k)) + BS (x(k — h(k)))

+ DK (k). =

Throughout this paper we assume the neuron
activations  s.(x.). (i=12 _ _.n 6 180 bounded and

monotonically nondecreasmg on R . 'and s5,(x;) 1S

Lipschitz continuous. that is. there exist constant
I. >0,i =120, n such that

s (1) —s. (1) = fi.|r1 —rz‘. VL ER. (4) e
By condition (4). s,(x;) satisty a
- -
sx)| =1 x| i=12.0

(5) )
B e —— s T ——



Theorem 1. The zero solution of the control discrete-time
system of neural networks (3) 1s asymptotically stable if
there exist symmetric positive definite matrices
P.G.W.R satistying the following matrix inequalities of

the form

N (L~ 4.0
*"”‘((z.n (2.2)}‘““0* -

where

(1,1)= CREGCRPD K KD " PET K DAPDK " BT CPAL
+ T ATPC A KD PAL s IE A PDKA LASPAL + hW,

(1.2)=CPBL+K'D'PBL+1 A'PBL.

C1U=L'B'PC+ L B PDRREITL B PAL,

(22)=I*B"PBL-G-hR, and h=h,—h, +1.




Proof. Consider the Lyapunov function candidate.

where

Vi(x(k)) = x" (k)Px(k) .

k-1
V,(x(k) = - x @Gx().
i=k—h(k}
k=k k-1
Vi(x(B) = 2 Xl @Wa(), ~
j=k-hy+li=j
k-1 =, i
V,(x(k)= > (hk)—k+i)x" ())Rx(i).
i=k—h(k)




The Lyapunov difference of the system along trajectory of
solution of (3) 1s given by

AV (x(k)) =V, (x(k +1)) -V (x(k))
=[Cx(k)+ AS(x(k))
+BS(x(k —h(k))) + Du(b)Jf
xP[Cx(k)+ AS(x(k))
+BS (x(k — h(k)))+ Du(k)]
—x' (k)Px(k)




= x" (k)[CPC + CPDK + KT D' PC
+K' D' PDK — Plx(k)

+x7 (k)CPAS(x(k))

+87 (x(k)) A" PCx(k)

+x" (k)CPBS(x(k — h(k)))

+57 (x(k — h(k))) BT PCx(k)

+x" (F)K' D' PAS(x(k))

+ST (x(k))4" PDKx(k) )
+X" (k)K* D" PBS(x(k - h(k))) -

+87 (x(k ~ h(k))) B PDEx(k)

+ST (x(k) A PBS(x(k — (k)
+ST(x(k — h(k)) B PAS(x(F))

+87 (x(k)) A" PAS(x(k))

+ST (x(k — h(k)))B" PBS (x(k — h(k))).




Based on (5). we obtain

AV (x(k)) = x" (k)[CPC + CPDK
—an Qe ¢,
2 Plx(k) + x" (k)CPALx(K)
+x (k)L AT PCx(k)
+x" (k)CPBLx(k — (k)
+x" (k =h(k))I' B PCx(k)
+x" (k)KTD? PALx(k)
+xT (k) I" A" PDKx(k)
o - - .-l-l-
+x' (k)K' D" PBLx(k - h(k))
+x" (k= h(i))I" B' PDKx(k)
+x (k)L AT PBLx(k — h(k))
+x" (k—h(E)L" B PALx(k)
+x" (k)L" A" PALx(k)
+x" (k= h(k))L' B" PBLx(k — h(k)).




Therefore.

AV, = x' (k)[CPC + CPDK
+K'D'PC+K'D'PDK - P
+CPAL+ L' A" PC+ K D PAL
+I' AT PDK + I' 4" PALxi(k)
+x" (k)[CPBL+K' D' PBL
+L' 4" PBLx(k —h(k))
+x (k—h(k)[L'B' PC
+L "B’ PDKx(k)+ LB PAL]x(k)
x (B — (O L B PBLx(k — h(k)),

K,




and. we get

k -1
AV, (x(k) = D, X (HGx() - X" ()Gx(i)
i=k+1—h(k+1) i=k—h(k)
k—h
= Z ' (NGx() + xT (B)Gx(k)
i=k—h(k+1)
—x" (k= h(kNGx(k — h(k))
-1 =1
+ QUG > B x (7).
k41— i=k+1-h(k)
. [ .--
Simce h(k)=h. weget
I.
-1 k-1 o
> ' (BGx(k)=' > x (1)Gx(i) < 0.
1y i=k+1-h(k) =




Therefore.

k=i
AV,(x(k) < D> x'(DGx()+x' (k)Gx(k)

i=k+1-hik+1)

—xT (k — k) Gl — h(k)).

Similarly, we obtain

F-hy [ k-1
AV, (x(k)) = X' (kyx(k)+ > xT{f}Wx(f)}
J=k=h+1| i=k+j
) '
_ D & (i)ﬁ{r{i)} A
J=k—hy=1| i=k+j-1 - -

k=
= (I, —)x" wxh) = Y. X Ox().
i=k+1—iy
F+1-1
AV,(k.y(R) = > (h(k+D=k+1+D)x" (DRx(i)
i=k+1-h(k+1)
r=1-1

- > (h(k)-k+Dx" ()HRx()

i=k+1-hik+1)




kE—hy

=(h,—h) D, x ()Rx@)

i=k+1-h{k+1)
+(hy —)x" (k) Rx(k)
—(hy, = h)x" (k- h(k)Rx(k — h(k))

-1
+(hy =ty) D x* (k)Rx(k)
k1
=1

—(hy, —1y) Z X' (D)Rx (D). =

i=k+1-h{k)

Since h(k) = h,. we get

(hy—=h) S x"(W)Rx(k)—(y=h) | 31 | x*@Rx(i) < 0.
k+1-Iy i=k+1-h(k) .




Therefore.

k-
AV (koy(R) =0 =D) > x" ()Rx(D)
i=k+1-h{k+1)

+(hy, —h)x’ (k)Rx(k)
~(hy = ) x" (k= h(k)) Rx(k — h(k)).

From AV, (x(F)). AV, (x(k)). and AV, (x(k)). we get

AV, (x(k))+ AV, (x(k)) + AV, (x(k)) <

k=
> T ()Gx()+x (k)Gx(k) "

i=k=h(k+1)

— T (k= h()Gx(k = h(k)) - -

k=

(hy=h) D, x'(@)Rx()

i=k-1-h(k+1)

+(hy — )x" (k) Rx(k)

—(hy = h)x" (k= h(k))Rx(k = h(k)) e
o k=l
+hxt (yx(y— > < HIR().
i=k=1-h
-



Where / = h,—h +1. Smce h(k)=h,. we have

k-

D> A ([HGxG) +x (k)Gx(k)
i=k—h{k+1}
k-

+(hy=h) > X ()Rx(i)

i=i+1=h{k+1)
+(hy = h)x" (K)Rx(k)
k=
- > X ()W) =0,
i=k+1-h,

Thus. - -

AV, (x(R)) + AV (x)) + AV, (x(K)) =

I X (i) — x5 (k= h(k) Gx(k — h(k))

~ T (k= (k) Rx(k — h (k).




As a result. we obtain

AV < x' (F)[CPC + CPDK + K" D' PC
+K'D"PDK— P+ CPAL+ L A" PC
+K'D'PAL+1" A" PDK 4+ I" A" PAL
+ hWlx(k)+ X% ()[CPBL+ KT DT PBL
+I" A" PBLx(k — h(k))
+x (k=h(k)[L' B PC + L' B' PDKx(k)

+I" BT PAL)x(k) .
47 (k= (k)L B* PBL — G —h Rlx (e — h(k)) i R
NEG) () (12)\(xk) '

A { v(k — h(ﬂ’))} {(ZJ) (2.2) J[ x(k=h(k)) |

="' () y(k).




Where.
(1.1)= CPC + CPDK + KL el D" PDK
— P+ CPAL + I AU D s 1" PDEK

+IT AT PAT& WO
(1.2)=CPBL + 8 Vi@ i’ AJPBE,
D=L BT P& PDEx(ky3+ "B PATL.

(2.2)=I"BT BBL G — 'R,

“x(k) )
26 = il ney )
By the condition (6). AV(y(k)) 15 negative definite. - -
namely there ‘1s a number G>0  such that
AV (y(k)) <-p||y (k) . and hence, the asymptotic
stability of the system immediately follows from Lemma B~
1. This completes the proof. 0

#



Example 1. Let us consider a control discrete-time system
of neural networks (3). given by the system

¥(k +1) = Cx(k) + AS(x(k)) + BS(x(k — h(k)))
+ DEx(F).

where the matrices are

.\ 06 0 ] A_"n.s 4}.2] .
L0 08) _L 0/ 08) v .~
04, 0.1 036401
), ],L: ‘
0 =09 0 02

.-"'{::lM
D:LIJ.E:D.B.EI:O.S.




Using the LMI Toolbox in MATLAB. we found that the
LMIs in Theorem 1 are feasible and

243226 20016
[—2.0016 15.2293}:
w :[' 7.3396 —23369} 1 (2.6914 -~ —0.9672)

—2.3369  4.2697 \F.8672 AR

6.3397 —1.2698)
—1.2698 3.2148J

A

0.2379 = hi(k) =14.6692 are set of solutions to the LMIs

(6).
By a straightforward. we have
e ..u.
(23579 1 99 ,
W_L 0 —1.6942J' ¥

The eigenvalues are -2.3579 and -1.6942, respectively.
This implies the matrix y < 0. It follows from Lemma 1

that the zero solution of control discrete-time system of
neural networks is asymptotically stable.




Remark 1. Theorem 1 gives a sufficient condition for the
asymptotic stability of control discrete-time system of
neural networks (3) via matrix inequalities. These
conditions are described i terms of ceitamn diagonal
matrix immequalities. which can be realized by using the
linear matrix mequality algorithm proposed. But [9. 10]
these conditions are described in terms of certain
syminetric matiixX inequalities. which can be realized by
using the Schur complement lemma and linear matrix
inequality algorithm proposed.




CONCLUSIONS

This paper was dedicated to the delay-dependent
stability of discrete-time recurrent neural networks with
time-varying delay. A less conservative [LMI-based
globally stability criterton 1s obtained with quadratic
Lyapunov functional approach and free-weighting matrix
approach for periodic discrete-time recwrent neural =
networks with a tme-varying delay. One example s~
illustrates the exactness of the proposed criterion.
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Abstract

This paper studies the problem of guaranteed cost control for a class of switched
recurrent neural networks with interval time-varying delay. The time delay is a
continuous function belonging to a given interval, but not necessary differentiable.

A cost function is considered as a nonlinear performance measure for the closed-loop
system. The stabilizing controllers to be designed must satisfy some exponential
stability constraints on the closed-loop poles. By constructing a set of augmented
Lyapunov-Krasovskii functionals, a guaranteed cost controller is designed via
memoryless state feedback control, a switching rule for the exponential stabilization
for the system is designed via linear matrix inequalities and new sufficient conditions
for the existence of the guaranteed cost state-feedback for the system are given in
terms of linear matrix inequalities (LMIs). A numerical example is given to illustrate the
effectiveness of the obtained result.

Keywords: neural networks; guaranteed cost control; switching design; stabilization;
L interval time-varying delays; Lyapunov function; linear matrix inequalities

1 Introduction

Stability and control of recurrent neural networks with time delay have attracted consid-
erable attention in recent years [1-8]. In many practical systems, it is desirable to design
neural networks which are not only asymptotically or exponentially stable but can also
guarantee an adequate level of system performance. In the area of control, signal process-
ing, pattern recognition and image processing, delayed neural networks have many useful
applications. Some of these applications require that the equilibrium points of the de-
signed network be stable. In both biological and artificial neural systems, time delays due
to integration and communication are ubiquitous and often become a source of instabil-
ity. The time delays in electronic neural networks are usually time-varying, and sometimes
vary violently with respect to time due to the finite switching speed of amplifiers and faults
in the electrical circuitry. Guaranteed cost control problem [9-12] has the advantage of
providing an upper bound on a given system performance index and thus the system per-
formance degradation incurred by the uncertainties or time delays is guaranteed to be
less than this bound. The Lyapunov-Krasovskii functional technique has been among the
popular and effective tools in the design of guaranteed cost controls for neural networks
with time delay. Nevertheless, despite such a diversity of results available, the most ex-
isting works either assumed that the time delays are constant or differentiable [13-16].
© 2013 Niamsup et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Although, in some cases, delay-dependent guaranteed cost control for systems with time-
varying delays were considered in [12, 13, 15], the approach used there cannot be applied
to systems with interval, non-differentiable time-varying delays. To the best of our knowl-
edge, the guaranteed cost control and state feedback stabilization for switched recurrent
neural networks with interval time-varying delay, non-differentiable time-varying delays
have not been fully studied yet (see, e.g., [9-12, 15-25] and the references therein). Which
are important in both theories and applications. This motivates our research.

In this paper, we investigate the guaranteed cost control for switched recurrent neural
networks problem. The novel features here are that the delayed neural network under con-
sideration is with various globally Lipschitz continuous activation functions, and the time-
varying delay function is interval, non-differentiable. Specifically, our goal is to develop a
constructive way to design a switching rule to exponentially stabilize the system. A nonlin-
ear cost function is considered as a performance measure for the closed-loop system. The
stabilizing controllers to be designed must satisfy some exponential stability constraints
on the closed-loop poles. Based on constructing a set of augmented Lyapunov-Krasovskii
functionals combined with the Newton-Leibniz formula, new delay-dependent criteria
for guaranteed cost control via memoryless feedback control are established in terms of
LMIs, which allow simultaneous computation of two bounds that characterize the expo-
nential stability rate of the solution and can be easily determined by utilizing MATLABs
LMI control toolbox.

The outline of the paper is as follows. Section 2 presents definitions and some well-
known technical propositions needed for the proof of the main result. LMI delay-
dependent criteria for guaranteed cost control and a numerical example showing the
effectiveness of the result are presented in Section 3. The paper ends with conclusions

and cited references.

2 Preliminaries

The following notation will be used in this paper. R* denotes the set of all real non-negative
numbers; R” denotes the n-dimensional space with the scalar product (x,%) or x7y of two
vectors x, y, and the vector norm || - ||; M"*" denotes the space of all matrices of (1 x r)
dimensions. AT denotes the transpose of matrix A; A is symmetricif A = AT; I denotes the
identity matrix; A(A) denotes the set of all eigenvalues of A; Apx(A) = max{Re x; A € A(A)}.
% = {x(t +8) 15 € [<h, 0]}, el = Supse_pop (£ + 5)I; C([0, ], R") denotes the set of all
R”-valued continuously differentiable functions on [0, t]; L5([0, £],R”) denotes the set of
all the R”-valued square integrable functions on [0, £].

Matrix A is called semi-positive definite (A > 0) if (Ax,x) > 0 for all x € R”; A is positive
definite (A > 0) if (Ax,x) > 0 for all x # 0; A > B means A — B > 0. The notation diagf{- - - }
stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by .

Consider the following switched recurrent neural networks with interval time-varying

delay:

®(t) = —A, (x)x(t) + Woy(x(:))f(x(t))
+ Wiy ng (x(E — h(0))) + Byopu(®), £ 0, @

x(t) = ¢(t)r te [_hh 0]:
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where x(£) = [x1(2), %2(¢),...,%,(£)]T € R” is the state of the neural, u(-) € L,([0,£],R™) is
the control; # is the number of neurons, and

F(x®) = [A@0).L@0), .. fulxa®)]
[gl (xl(t))’gZ (xZ(t))¢ <o 8n (xn (t))] T;

=

2

=

~
I

are the activation functions; y(-) : R — N := {1,2,..., N} is the switching rule, which is a
function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
y (x(2)) = j implies that the system realization is chosen as the jth system, j=1,2,...,N. It
is seen that system (2.1) can be viewed as an autonomous switched system in which the
effective subsystem changes when the state x(¢) hits predefined boundaries.

A; = diag(ayj, @)y ..., ay), a;; > 0, represents the self-feedback term; B; € R"*" are con-
trol input matrices; Wy;, Wi; denote the connection weights and the delayed connection
weights, respectively. The time-varying delay function /() satisfies the condition

0 < ho <h(t) <h.
The initial functions ¢(¢) € C' ([, 0], R"), with the norm

g1l = sup,c i 01y [0 + |60

In this paper we consider various activation functions and assume that the activation func-
tions f(-), g(-) are Lipschitzian with the Lipschitz constants f;, e; > 0:

[iED=fi&)| <filé1-&l, i=1,2,..,nVE 6 €R,

2.2)
|gt(%—1) _gi(§2)| = ei'él B 2;'2|, i= Je ..., n’vé:l’%_2 eR.
The performance index associated with system (2.1) is the following function:
oo
] = / SO (6x(8), x( = h(2)), u(?)) dt, (2.3)
0
where fO(¢,x(t),x(t — h(t)), u(t)) : Rt x R* x R* x R™ — R*, is a nonlinear cost function
satisfying
3QL Q2 R:f°(t,%,y,u) < (Qux,x) + (Qoysy) + (Ru, u) (2.4)

for all (¢,x,y,u) € R* x R" x R" x R™ and Qy,Qy € R, R € R™*™, are given symmet-
ric positive definite matrices. The objective of this paper is to design a memoryless state
feedback controller u(t) = Kx(t) for system (2.1) and the cost function (2.3) such that the
resulting closed-loop system

(1) = —(A) - BiK)x(t) + Woif (x(2)) + Wiyg (x(¢ — h(2))) (2.5)

is exponentially stable and the closed-loop value of the cost function (2.3) is minimized.
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Remark 2.1 It is worth noting that the time delay is a time-varying function belonging to
a given interval, in which the lower bound of delay is not restricted to zero; therefore, the
stability criteria proposed in [4-7, 9-13, 15-18, 21-24] are not applicable to this system.

Remark 2.2 Itis worth noting that the time delay is a time-varying function belonging to a
given interval, in which the delay function A(¢) is non-differentiable; therefore, the stability

criteria proposed in [5, 6, 8,10-12, 1419, 22-25] are not applicable to this system.

Definition 2.1 Given « > 0. The zero solution of closed-loop system (2.5) is «-exponen-
tially stabilizable if there exists a positive number N > 0 such that every solution x(¢, ¢)
satisfies the following condition:

|x(z,8)| < Ne=**||pll,.  V£=0.

Definition 2.2 Consider control system (2.1). If there exist a memoryless state feedback
control law u(t) = Kx(£) and a positive number /* such that the zero solution of closed-
loop system (2.5) is exponentially stable and the cost function (2.3) satisfies J < J*, then
the value J* is a guaranteed constant and u(¢) is a guaranteed cost control law of the system

and its corresponding cost function.

We introduce the following technical well-known propositions, which will be used in

the proof of our results.

Proposition 2.1 (Schur complement lemma [26]) Given constant matrices X, Y, Z with
appropriate dimensions satisfying X = X7, Y = YT > 0. Then X + ZTY~'Z < 0 if and only if

x zr
<0.

Proposition 2.2 (Integral matrix inequality [27]) For any symmetric positive definite ma-
trix M > 0, scalar o > 0 and vector function o : [0,0] — R” such that the integrations
concerned are well defined, the following inequality holds:

o T o o
(/0 w(s) ds) M(/O w(s) ds) 50(/0 a)T(s)Ma)(s)ds>.

3 Design of guaranteed cost controller
In this section, we give a design of memoryless guaranteed feedback cost control for neural

networks (2.1). Let us set

1
wi = -[P+allA; - AT [P +al] - 2B;B] +0.25B,RB] + ) G,
i=0

wiy =P+ A;P+05BB],
wiz = e " Hy + 0.5B,B] + A;P,

wig = 2¢ " Hy + 0.5B,B] + AP,
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wis = PO.5B;B] + AP,

1 1
waa = Y WyDW] + Y I H;+ (= ho)U ~ 2P~ BB,
i=0

i=0

Wo3 =P, Wy =P, Wos =P,

1
wag = —e 20 Gy — e MO Hy — MU + ) " WD W,
i=0

wsq =0, was = —2am U,
1
wag =y WiDiW, —e MU —eMG — e H,,  wys=e MU,
i=0

Ws5 = —e’z"‘hll,[ i WO;'DO WOJ;,
E = diagfe;,i=1,...,n}, F =diag{f;,i=1,...,n},
}Vl = Amin(P_l);

1
A2 = Anax (P7) + Mo M max |:P‘1 (Z Gl«)P‘l:l

i=0

1
+ B A |:P‘1 (Z Hi)P“1:| + (I = ho)hmax (PTEUP ).

i=0

Theorem 3.1 Consider control system (2.1) and the cost function (2.3). If there exist sym-
metric positive definite matrices P, U, Gy, G, Hy, H, and diagonal positive definite matrices
Dy, i = 0,1, satisfying the following LMIs:

Wi Wiz Wiz Wi Wis

* Wy Wiz Wiy  Wis
E=| = *  Ws3 was wss | <0, j=12,...,N, (3.1)
* * * W44 Was
* * * *  Wss
[—PA;—ATP=Y se®"H; 2PF PQ
Slj: * -Dy 0 <0, j=12,...,N, (3.2)
i % *  —-Q
[ WyD\ W — e 2PE  PQ
82,: * -Dy 0 <0, j=12,...,N, (3.3)
i * *  —Qt
then
1
ui(t) = —EBITP"lx(t), t>0,j=12,...,N, (3.4)

is a guaranteed cost control and the guaranteed cost value is given by

T = rallpll?.
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The switching rule is chosen as y(x(t)) = j. Moreover, the solution x(t, ) of the system

satisfies

s
|x(z,0)| < \/;je‘“tllwl, vt > 0.

Proof LetY = P7L, y(t) = Yx(t). Using the feedback control (2.5), we consider the following

Lyapunov-Krasovskii functional:

6
V(tr xt) = Z ‘/i(tr xt):

i=1
Vi =xT(¢) Ya(t),

t
Vy = / 2607 (5)YG, Yx(s) ds,
t—hg

t
Vs = / 2605 T ()Y G, Ya(s) ds,
t—hy

0 t
Vi = hy / f 05T (2)YHo Y x(z) d ds,
—ho Jt+s

0t
Vs = hl/ / 05T (1) YH Y x(t) d ds,
—hy Jt+s

t—hg t
Ve = (1 = ho) / / 2 05T () YUY x(t) dt ds.
t—hy t+s

It is easy to check that
2
M@ < V(&%) < Ao llxl?, VE> 0.
Taking the derivative of Vi, we have

Vi = 2x7(£) Y(2)
=y (B)[-PA] — A;P]y(2) -y (£)B;B] y(®)

+ 297 () Woif ()y(0) + 29" () Wyyg()y()

Vo = 7 (0)Goy(t) — e 20y (¢ — ho) Goy(t — ho) — 20 Va;

Vs = yT()Guy(t) — e 2"y (£ — ) Gry(t — hy) — 20 Va;

t
V4, = hgyT(t)Hoy(t) — hle—Zaho / Q'CT(S)H()J.C(S) ds —2a V4,;
t—hg

t
VS = h%yT(t)Hly(t) — hle_zahl / j/T(s)Hlj/(s) dS % V4;
t—hy

t—hg

Ve = (hy — ho)*yT () Uy(t) — (hy — ho)e™ 2™ / 3T (s)Uy(s) ds — 2a V.

t—hy

(3.5)

Page 6 of 12
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Applying Proposition 2.2 and the Leibniz-Newton formula
t
[ 3wz =5t -56,
we have, forj=1,2,i=0,1,

t t T t
_ . .T '. _ . : .
h; /thiy (s)Hjj(s)ds < [/;hiy(s) ds} H,{/ﬁhiy(s) ds}

< —[3(6) - y(¢ = B @) ] H[y(2) - y(¢ - h(2))]
= —yT (O Hy(t) + 257 (O Hyy(t - h(z))

~y"(t = h)Hyy/(t - 1) (3.6)
Note that
t—ho t—h(t) t—hg
/ j/T(s) Uy(s)ds = f j/T(s)LIj/(s) ds + / j/T(s)LIj/(s) ds.
t-h t—hy t—h(t)

Applying Proposition 2.2 gives

t—h(t) t=h(t)

1 t—h(t)
. T . g .
J()Uy(s)ds = |:/t—h1 9(s) ds] U[/[‘hl (s) ds]

> [y(t = h(®)) - y(t = )] Uly(t - h(e)) = y(& — )]

[~ ho) [

t—hy

Since iy — h(t) < Iy — hg, we have

t—h(t)
[y — ho] f ) JTOUj(s)ds > [y(t =) - y(¢ — )] Uy (¢ - h@) =3t = hy)],

then

t=h(#)
~[h1 — ho] / , i () Uj(s)ds < —[y(t - h(t)) - (& - hl)]TU[y(t —h(t)) - y(t - )].

Similarly, we have

t-ho po
—(h1 - ho) / o JTUH(s) ds < ~[y(t — ho) - y(t — h(®)) ] U[y(t = ho) - y(¢ - (8))].
Then we have
V() +2a V() <y (0)[-PA] - AiPy(e) - y" ()BiB] y(2) + 29" (6) Woyf ()

1
+2y7(2) Whig(-) + yL(t) (Z Gi)y(t) + 2a(Py(t),y(t))

i=0

1
+57(0) (Z h%m-)y(z) +Un = o)y (OU5(@)
i=0

Page 7 of 12
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1
=Y ety (e - h)Giy(t - hy)

i=0

&2 [y(¢) = y(t - ho) | Ho[y(®) - y(t - ho)]

e M y(t) - y(t — )| Hy[y(®) = y(t — )]
2 [y (e~ h(t)) — y(t — )] ULy(t ~ h(®) -yt~ )]

— e M y(t —ho) —y(t — ()] Uyt~ ho) ~y(t~h(®)].  (3.7)

Using equation (2.5)
Pj(e) + A;Py(t) - Woif (-) — Wag(-) + 0.5B;B (1) = 0

and multiplying both sides by [2y(£), —25(¢), 2y(t — ho), 2y(t — hy), 2(t — h(2))]T, we have

2T ()Py(®) + 297 (D AjPy(2) - 2" (1)) Woyf () — 297 () Wijg ()
+y" (0)B;B] y(t) = 0,

=251 ()Py(t) - 25" () AjPy(2) + 25" (£) Woyf ()
+ 257 () Wg() - 37 (£)B;B] y(t) = O,

29" (t — ho)Py(t) + 29" (¢ = ho)AjPy(2) — 29" (¢ — ho) Woyf (-) =
= 2" (¢ - o) Whig(-) + " (¢ = ho)B;B] y() = 0

(8~ m)Py(8) + 2y (t — m)AjPY(E) - 29" (&t = ) Wo,f ()

= 29" (¢ - ) Whjg() + y" (¢ — n)B;B y(£) = 0

29" (¢ = () Pj(e) + 297 (¢ = h(£)) AjPy(£) — 29" (£ — h(£)) Woif ()
- 29" (= h()) Wyg(-) + 2y" (£ = h(2))B;B[ y(¢) = 0.

Adding all the zero items of (3.8) and £° (¢, x(£), x(£ — i(2)), u(t)) =f° (£, %(2), x(t — h(t)), u(t)) =
0, respectively, into (3.7) and using the condition (2.4) for the following estimations:

SOt x(0), (2 = h(©)), (1)) < (Quale), x(2)) + (Qux(t — h(t)), x(t — h(2)))
+ (Ru(2), u(z))
= (PQuPY(), y() + (PQuPy(t — h(®)), y(t — h(®)))
+0.25(B;RB] y(£), y(0)),
2(Woyf (x),9) < (WosDo Wy, 9) + (Dg'f (), £ (),
2(Wig(2),y) < (WyD1Wily,9) + (Di'g(2).g(2))
2{D5f (), £ () < (FDy F, ),
(D

2(D;'g(2),g(2)) < (ED{'Ez, z),
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we obtain

V() +2aV() < T @& @) + 3T @O)Syp(e) +y7 (£ - h(®))Syy(t — h(D))
—fO(t,x(t), x(t - h(t)), u(t)), (3.9)

where ¢ (¢) = [y(2), (2), y(¢ = ho), y(t — ), y(t — h(£))], and

wn Wiz Wiz Wi Wis

* o Wy Wiz Wig  Wos
gj = ok * 0 W33 Wza Wss |,

* * * Waq Wys

* *k * * Ws5

1
Sjj=-PAj—A'P- Z e 2" H; + APFD;'FP + PQ,P,
i=0

Sy = WyDy Wy, — e **"2 U + 4PED}'EP + PQ,P.

Note that by the Schur complement lemma, Proposition 2.1, the conditions S;; < 0 and
Syj < 0 are equivalent to the conditions (3.2) and (3.3), respectively. Therefore, by condi-
tions (3.1), (3.2), (3.3), we obtain from (3.9) that

Vit,x) < -2aV(t,x), Vt=0. (3.10)
Integrating both sides of (3.10) from O to £, we obtain

V(t, %) < V(p)e 2, Vi=>0.
Furthermore, taking condition (3.5) into account, we have

Mxe @) = Viw) = V(@)e ™™ < mpe 9112,

then

A
[xt.0)] < [ Ze gl £=0,
1

which concludes the exponential stability of closed-loop system (2.5). To prove the optimal
level of the cost function (2.3), we derive from (3.9) and (3.1)-(3.3) that

V(t,ze) < —f°(t,x(t), x(t - h(2)), u(t)), t=0. (3.11)

Integrating both sides of (3.11) from 0 to ¢ leads to

/tfo (£ x(2),x(¢ — h(2)), u(®)) dt < V(0,20) — V(t,2,) < V(0,20),
0
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due to V(t,z;) > 0. Hence, letting ¢t — +00, we have
T= [ 6n(0,3(e - o), u0) de = VOO.20) < hallg1P =T
0

This completes the proof of the theorem. d

Example 3.1 Consider the switched recurrent neural networks with interval time-varying

delays (2.1), where
01 O 02 O -01 0.3
Ay = 5 Ay = ) Wor = )
0 03 0 04 0.2 -0.8
-0.7 0.3 -04 0.2 -02 0.3
Woa = 5 Wi = , Wi = ,
0.4 -0.9 0.3 -0.3 01 -0.4
0.1 0.2 02 O 03 O
Bl = ] BQ = y E = » F = p
0.2 0.3 0 04 0 05
0.3 02 0.4 0.1 0.3 0.3
= N = % R= )
& {0.2 0,7} 2 [0,1 0.6] {0.3 0.9}

h(t) =0.1+12652sin> ¢t if £ € T = | o o[2km, (2k + 1)7r],
h(t)=0 igs g

Note that /(¢) is non-differentiable, therefore, the stability criteria proposed in [4=7, 9—
13,15-18, 21-24] are not applicable to this system. Given « = 0.3, /1o = 0.1, /i; = 1.3652, by
using the Matlab LMI toolbox, we can solve for P, U, Gy, Gi1, Hy, H1, Do, and D; which
satisfy the conditions (3.1)-(3.3) in Theorem 3.1.

A set of solutions is as follows:

[ 3.1239 —0.2365:|

-0.2365 3.0123

15219 <0.3659
-0.3659 22398 |’

o [1.3225 0.0258 [2.2368 0.0148
°710.0258 1.2698 |’ ""lo.o0148 31121
o [2.2189 0.1238 [23225 0.0369
"7 101238 1.2368] "7 10.0369 21897 |’
(29870 0 32698 0
Dy = . D= .
0 32589 0  4.3258

Then

uy(2) = 0.2579x,(¢) + 0.2589x,(¢), t>0,

uy(t) = 0.1397x1(¢) + 0.2176x,(¢), t>0,

Page 10 of 12
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x1
- = x2
-4 . " 1 1
0 2 4 6 8 10
Time (sec)
Figure 1 The simulation of the solutions x; () and x,(t) with the initial condition ¢(t) = [10 517,
t €[0,10].

are a guaranteed cost control law and the cost given by
J*=1.1268| 6.

Moreover, the solution x(¢, ¢) of the system satisfies
|x(&:8) | <2.3257¢ %% |1¢ll, ¥t > 0.

The trajectories of solution of switched recurrent neural networks is shown in Figure 1,
respectively.

4 Conclusions

In this paper, the problem of guaranteed cost control for Hopfield neural networks with in-
terval non-differentiable time-varying delay has been studied. A nonlinear quadratic cost
function is considered as a performance measure for the closed-loop system. The stabiliz-
ing controllers to be designed must satisfy some exponential stability constraints on the
closed-loop poles. By constructing a set of time-varying Lyapunov-Krasovskii functionals,
a switching rule for the exponential stabilization for the system is designed via linear ma-
trix inequalities. A memoryless state feedback guaranteed cost controller design has been
presented and sufficient conditions for the existence of the guaranteed cost state-feedback
for the system have been derived in terms of LMIs.
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Abstract. This paper deals with the problem of delay-dependent stability criterion of discrete-time
recurrent neural networks with time-varying delays. Based on quadratic Lyapunov functional
approach and free-weighting matrix approach, some linear matrix inequality criteria are found to
guarantee delay-dependent asymptotical stability of these systems. And one example illustrates the
exactness of the proposed criteria.

Introduction

A recurrent neural network (RNNs) is a very important tool for many application areas such as
associative memory, pattern recognition, signal processing, model identication and combinatorial
optimization. With the development of research on RNNs in theory and application, the model is
more and more complex. Parameter uncertainties and nonautonomous phenomena often exist in real
systems due to modeling inaccuracies [1, 2]. Particularly when we consider a longterm dynamical
behavior of the system and consider seasonality of the changing environment, the parameters of the
system usually will change with time [3, 4]. Simultaneously, in implementations of artificial neural
networks, time delay may occur due to finite switching speeds of the amplifiers and communication
time [5, 6]. In order to model those systems with neural networks, the neural networks with time-
varying delay appear in many papers [7, 8]. So in this paper we consider the stability of the
following discrete-time recurrent neural networks:

In this paper, we consider control discrete-time system of neural networks of the form

v(k +1)=Cv(k)+ AS(v(k)) + BS(v(k — h(k))) + Du(k)+ f, (1)
where v(k)eQQcR" is the neuron state vector, O0<h, <h(k)<h, Vk=0,1,2,...,
C=diagic,...,c,}, c,20,i=12,..,n is the nxn constant relaxation matrix, 4,B are the nxn
constant weight matrix, D is nxm constant matrix, u(k)eR"” is the control
vector, f =(f,,..., f,) € R" is the constant external input vector and S(z)=[s,(z,),...,s,(z,)]" with
s; € C'[R,(-1,1)] where s, is the neuron activations and monotonically increasing for each
i=12,...n.

The asymptotic stability of the zero solution of the delay-differential system of Hopfield neural
networks has been developed during the past several years. Much less is known regarding the
asymptotic stability of the zero solution of the control discrete-time system of neural networks.

Therefore, the purpose of this paper is to establish sufficient condition for the asymptotic stability of
the zero solution of (1) in terms of certain matrix inequalities.

Preliminaries

The following notations will be used throughout the paper. R" denotes the set of all non-negative
real numbers; Z"~ denotes the set of all non-negative integers; R” denotes the n-finite-dimensional
Euclidean space with the Euclidean norm |||| and the scalar product between x and y is defined by

x"y; R™™ denotes the set of all (nxm)-matrices; and A" denotes the transpose of the matrix A4;

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 202.28.38.174-26/08/13,07:12:13)
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Matrix Q e R™" is positive semidefinite (Q >0) if x"Ox >0, for allx e R". Ifx"Ox > 0(x"Qx <0,
resp.) for any x# 0, then Q is positive (negative, resp.) definite and denoted by O >0,(Q <0,

resp.). It is easy to verify that O >0, (0 <0, resp.) iff 35>0: x' xzﬂ”x ? ,VxeR", (3>0:
xTQxS—,B”x

? ,Vx eR", resp.).

Lemma 1. [1] The zero solution of difference system is asymptotic stability if there exists a positive
definite function V(x):R" — R" such that

3B > 0: AV (x(k)) =V (x(k +1)) =V (x(k)) < - B|x(k)

along the solution of the system. In case the above condition holds for all x(k) eV}, we say that the

2
s

zero solution is asymptotically stable.

Main Results

In this section, we consider the sufficient condition for asymptotic stability of the zero solution v*
of (1) in terms of certain matrix inequalities. Without loss of generality, we can assume that
v '=0,8(0)=0 and f =0 (for otherwise, we let x=v—v  and define S(x)=S(x+v)-S(»")). The
new form of (1) is now given by
x(k+1) = Cx(k)+ AS(x(k))+ BS(x(k — h(k)))+ Du(k) . (2)
This is a basic requirement for controller design. Now, we are interested designing a feedback
controller for the system (2) as u(k) = Kx(k), where K is nxm constant control gain matrix.

The new form of (2) is now given by
x(k+1)=Cx(k)+ AS(x(k))+ BS(x(k — h(k))) + DKx(k) . 3)

Throughout this paper we assume the neuron activations s,(x;), i =1,2,...,n i1s bounded and
monotonically nondecreasing onR, and s.(x,) 1s Lipschitz continuous, that is, there exist constant
[ >0,i=1,2,...,n such that

|Si(r1)_si(r2)|Sli|ri_r2 ,VI’I,I”ZER. (4)
By condition (4), s,(x;) satisfy
|s,(x)| <L |x|, i=12,...,n. (5)

Theorem 1. The zero solution of the control discrete-time system of neural networks (3) is
asymptotically stable if there exist symmetric positive definite matrices P,G,W, R satisfying the
following matrix inequalities of the form

(an o 0 §
V= (2,2)<, (6)

where
(1,1)= CPC+CPDK +K"'D"PC+K"D"PDK — P+ CPAL+ L' A" PC

+KTDTPAL + I A" PDK + [T A" PAL + hW,
(1,2)=CPBL+K'D"PBL+I" A" PBL, (2,1)=L" B PC + I B" PDKx(k) + L' B" PAL,

(22)=L"B"PBL—G—hR, and h=h, —h +1.
Proof. Consider the Lyapunov function candidate, where
Vi(x(k)) = x" (k) Px(k),

k-1

V,(xk)= 3, x'()Gx(),

i=k—h(k)
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k=hy k-1

Vy(x(k)) = __Z ZxT(i)Wx(i),

Vix(k) = D (h(k)~k+i)x" ()Rx(D).

The Lyal;énlg: difference of the system along trajectory of solution of (3) is given by
AV, (x(k)) =V, (x(k +1)) =V, (x(k))
=[Cx(k)+ AS(x(k))+ BS(x(k — h(k))) + Du(k)]"
xP[Cx(k)+ AS(x(k))+ BS(x(k — h(k)))+ Du(k)]
—x" (k)Px(k)
=x" (k)[CPC + CPDK + K"D"PC + K" D" PDK — P]x(k)
+x" (k)CPAS(x(k))+ S™ (x(k))A" PCx(k)
+x" (k)CPBS (x(k - h(k)))+S” (x(k = h(k)))B" PCx(F).
As a result, we obtain
AV < x"(k)[CPC +CPDK + K'D"PC+ K" D" PDK — P
+CPAL + [T A'PC + K" D' PAL + [' A"PDK + I A" PAL + h Wlx(k)
+x" (k)[CPBL+K"D"PBL+ L" A" PBL)x(k = h(k))
+x" (k= h(k)[L"B"PC + L' B PDKx (k) + L' B PAL]x(k)

+x” (k — h(k))[L-B"PBL — G — h Rx(k — h(k)),

(x(k) ran 1,2 xk
- x(k—h(k))) \(2,1) (2,2) )\ x(k—h(k))
=" (k) y(k),

Where,

(1,1)=CPC+CPDK +K"D"PC + K" D"PDK — P

+CPAL + 1" A"PC+K"D" PAL+ 1" A" PDK + L' A" PAL + h w,
(1,2)=CPBL+K"D"PBL+L" A" PBL,
(2,1)=L"B" PC + L' B" PDKx(k)+ L' B" PAL,

(2,2)=I"B"PBL—G —hR,
x(k)
y(k) = :
x(k —h(k))
By the condition (6), AV (y(k)) is negative definite, namely there is a number £ >0 such that

AV (y(k) <-p || y(k) ? , and hence, the asymptotic stability of the system immediately follows from

Lemma 1. This completes the proof.

Remark 1. Theorem 1 gives a sufficient condition for the asymptotic stability of control
discrete-time system of neural networks (3) via matrix inequalities. These conditions are described
in terms of certain diagonal matrix inequalities, which can be realized by using the linear matrix
inequality algorithm proposed. But [9, 10] these conditions are described in terms of certain
symmetric matrix inequalities, which can be realized by using the Schur complement lemma and
linear matrix inequality algorithm proposed.
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Conclusions

This paper was dedicated to the delay-dependent stability of discrete-time recurrent neural networks
with time-varying delay. A less conservative LMI-based globally stability criterion is obtained with
quadratic Lyapunov functional approach and free-weighting matrix approach for periodic discrete-
time recurrent neural networks with a time-varying delay. One example illustrates the exactness of
the proposed criterion.
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Abstract—This paper is concerned with robust mean square
stability of uncertain stochastic switched discrete time-delay
systems. The system to be considered is subject to interval time-
varying delays, which allows the delay to be a fast time-varying
function and the lower bound is not restricted to zero. Based
on the discrete Lyapunov functional, a switching rule for the
robust mean square stability for the uncertain stochastic discrete
time-delay system is designed via linear matrix inequalities.

I. INTRODUCTION

Switched systems constitute an important class of hybrid
systems. Such systems can be described by a family of
continuous-time subsystems (or discrete-time subsystems) and
a rule that orchestrates the switching between them. It is well
known that a wide class of physical systems in power systems,
chemical process control systems, navigation systems, auto-
mobile speed change system, and so forth may be appropri-
ately described by the switched model [1-7]. In the study of
switched systems, most works have been centralized on the
problem of stability. In the last two decades, there has been
increasing interest in the stability analysis for such switched
systems; see, for example, [8, 9] and the references cited
therein. Two important methods are used to construct the
switching law for the stability analysis of the switched sys-
tems. One is the state-driven switching strategy [9]; the other
is the time-driven switching strategy [8]. A switched system
is a hybrid dynamical system consisting of a finite number of
subsystems and a logical rule that manages switching between
these subsystems (see, e.g., [1-10] and the references therein).

The main approach for stability analysis relies on the use of
Lyapunov-Krasovskii functional and linear matrix inequality
(LMI) approach for constructing a common Lyapunov function
[11, 12, 13]. Although many important results have been
obtained for switched linear continuous-time systems, there
are few results concerning the stability of switched linear
discrete systems with time-varying delays. In [14, 15], a class
of switching signals has been identified for the considered
switched discrete-time delay systems to be stable under the
average dwell time scheme.

This paper studies robust mean square stability problem
for uncertain stochastic switched linear discrete-time delay
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with interval time-varying delays. Specifically, our goal is to
develop a constructive way to design switching rule to robustly
mean square stable the uncertain stochastic linear discrete-
time delay systems. By using improved Lyapunov-Krasovskii
functional combined with LMIs technique, we propose new
criteria for the robust mean square stability of the uncertain
stochastic linear discrete-time delay system. Compared to the
existing results, our result has its own advantages. First, the
time delay is assumed to be a time-varying function belonging
to a given interval, which means that the lower and upper
bounds for the time-varying delay are available, the delay
function is bounded but not restricted to zero. Second, the
approach allows us to design the switching rule for robust
mean square stability in terms of of LMIs.

The paper is organized as follows: Section II presents def-
initions and some well-known technical propositions needed
for the proof of the main results. Switching rule for the robust
mean square stability is presented in Section III.

1I. PRELIMINARIES

The following notations will be used throughout this paper.

R* denotes the set of all real non-negative numbers; R"
denotes the n-dimensional space with the scalar product of
two vectors (7,y) or xly; R™ " denotes the space of all
matrices of (n x r)— dimension. Nt denotes the set of all
non-negative integers; A” denotes the transpose of A; a matrix
A is symmetric if A = AT,
Matrix A is semi-positive definite (A > 0) if (Ax, z) > 0, for
all z € R™; A is positive definite (A > 0) if (Az,z) > 0 for
all z # 0; A > B means A— B > 0. A\(A) denotes the set of
all eigenvalues of A; Ayin(A) = min{ReX : A € A(A4)}.

Consider a uncertain stochastic discrete systems with inter-
val time-varying delay of the form

2(k+1) = (A, + DA, (k)2(k) + (B, + AB, (k))a(k — d(k))

+ oy (z(k), 2(k — d(k)), k)w(k),

k€N+, x(k) =vg, k=—ds,—dy+1,...,0,
(H
where x(k) € R™ is the state, v(.) : R* — N :=
{1,2,...,N} is the switching rule, which is a function



depending on the state at each time and will be designed.
A switching function is a rule which determines a switching
sequence for a given switching system. Moreover, y(z(k)) = i
implies that the system realization is chosen as the i*" system,
i=1,2,..., N. It is seen that the system (1) can be viewed as
an autonomous switched system in which the effective subsys-
tem changes when the state z(k) hits predefined boundaries.
A;y Bi,i = 1,2,..., N are given constant matrices and the
time-varying uncertain matrices AA;(k) and AB;(k) are de-
fined by AAl(k') = EiaFia(k)Hia7 ABz<k) = EibFib(k)Hiba
where FE,;,, E;,, H;o, H;p are known constant real matrices
with appropriate dimensions. F;,(k), Fj;(k) are unknown un-
certain matrices satisfying

FL(k)Fia(k) <I, Fg(k)Fy(k) <1,

ib

k=0,1,2,..,

2)
where I is the identity matrix of appropriate dimension, w(k)
is a scalar Wiener process (Brownian Motion) on (€2, F, P)
with

Elw(k)] =0, Elw’(k)]=1, BElw@w(j)] =00 # j)(,3)

and 0;: R" X R" xR — R",1=1,2,..., N is the continuous
function, and is assumed to satisfy that

o7 (w(k), 2k — d(R)), W)as(@(k), =(k — d(k)), k) <
pirzT (k)x(k) + px” (k < d(k))x(k — d(k), (4)
z(k),z(k — d(k) € R",

where p;1 > 0 and p;2 > 0,72 = 1,2, ..., N are known constant

scalars. The time-varying function d(k) : Nt — N satisfies
the following condition:

O<dy <d(k)<ds, YkENT

Remark 2.1. It is worth noting that the time delay is a
time-varying function belonging to a given interval, in which
the lower bound of delay is not restricted to zero.

Definition 2.1. The uncertain stochastic switched system (1)
is robustly stable if there exists a switching function ~(.) such
that the zero solution of the uncertain stochastic switched
system is robustly stable.

Definition 2.2. The system of matrices {J;},i =1,2,..., N,
is said to be strictly complete if for every x € R™\{0} there
is i€ {1,2,..., N} such that 27 .J;z < 0.

It is easy to see that the system {J;} is strictly complete if
and only if

N
U Q= Rn\{0}7

where

o ={zeR": z'Jz<0}i=12.N.

Definition 2.3. The discrete-time system (1) is robustly stable
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in the mean square if there exists a positive definite scalar
function V(k,z(k) : R x R™ — R such that

E[AV (k,z(k))] = ElV(k+1,2(kE+ 1)) = V(k,z(k))] <0,
along any trajectory of solution of the system (1).
Proposition 2.1. [16] The system {J;},i = 1,2,... N,

is strictly complete if there exist 6; > 0,0 =
1,2,...,N,Zf\;1 0; > 0 such that

N
i=1

If N = 2 then the above condition is also necessary for the
strict completeness.

Proposition 2.2. (Cauchy inequality) For any symmetric
positive definite marix N € M"*"™ and a,b € R™ we have

+a"b < a’Na+b"N~'b.

Proposition 2.3. [16] Let E,H and F be any constant
matrices of appropriate dimensions and FTF < I. For any
€ > 0, we have

EFH + HT'FTET < ¢EBET + ¢ 'H"H.

III. MAIN RESULTS

Let us set
Wiin Wia Wis
Wi= | * Wi Wi
* * Wiss
where
Wiin=Q — P,
Wiz = 81 — 514,
Wiz = —S1B;;
Wiso = P+ Sy + S| + H H;, + S1E E}, ST,
Wias = —S1 B,

Wiss = —Q + 2H} Hyy, + 2pinl,
Ji=(dy —d)Q — S1A; — AT ST +28,E;,EL ST
+ S1EgELST + HL Hyq +2pii I,

a;={x€R": &)

2T Jix <0}, i=1,2,...,N,
i—1

dlzal, di:ai\U&j7 122,3,,N
j=1

The main result of this paper is summarized in the following
theorem.
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Theorem 1. The uncertain stochastic switched system
(1) is robustly stable in the mean square if there exist
symmetric positive definite matrices P > 0,Q > 0 and matrix
S1 satisfying the following conditions

(i) 36, > 0,i=1,2,...,N, N 6;>0: Y 6,J; <0.

(i) W; <0, i=1,2,..,N.

The switching rule is chosen as ~(x(k)) = 4, whenever

x(k‘) € ;.

Proof. Consider the following Lyapunov-Krasovskii functional
for any ¢th system (1)

V(k) = Vi(k) + Va(k) + Va(k),
where
k-1
Vi(k) = 2" (k)Pa(k), Va(k)= =3 &T@)Qa(i),
i=k—d(F)
—di4+1 k-1
j=—da+2 I=k+j+1
We can verify that
M|z (k) [* < V (k) (©)
Let us set £(k) = [z(k) 2(k + 1) z(k — d(k)) w(k)]*, and
0 0 0 O P 0 0 O
0 P 0 O I I 0 0
H: B G:
0 0 0 O 00 ¥ B
0 0 0 O 0 0 0 I

Then, the difference of V; (k) along the solution of the system
(1) and taking the mathematical expectation, we obtained

E[AVi(k)] = B[z (k + 1)Pa(k+ 1) — 2T (k) Pz(k)]

0.5z(k)
= Bl (WHew) 285w [ ]
0
(7
because of
T (k)HE(k) = z(k 4+ 1)Pz(k + 1),
0.5z (k)
26T (k)GT g = 2T (k) Px(k).
0

Using the expression of system (1)
0=—Siz(k+1) + S1(4i + EiaFia(k)Hiq) 2 (k)
+Sl (31 + Elezb(k)sz).’t(k‘ - d(k)) + Slaiw(k),
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0= —0; JU(]C +1)+0; (A + EiaFia(k)Hia)z (k)
ol (B; + EgFu(k)Hgp)x(k — d(k)) + o) ow(k),

we have

E[-2¢"(k)GT
0.5z (k)
[—Slx(k + 1) + Sl (Az + EiaFia(k)Hia)(E(k)
0
[—O';TCE(]C + 1) + ULT(Al + EiaFia(k’)Hia)CL’(k)

Therefore, from (7) it follows that

]

E[AVi (k)] = E[aT(k)[-P — S1A; — 51 Eiq Fia (k) Hi
— A S - HﬁFi( )EmST]“( )
+ 21? ( )[ - SlELaFI(l(k)Hll] (k + 1)

+ 227 (k)[ SIB SlEszzb(k) Hiplz(k — d(k))

+ 227 (k)[=810% — 0] Ai — 0 EioFio(k)Higlw(k)
+a(k+1)[S1+ St|z(k +1)

+ 2a(k + 1)[—81Bi — S1(Bip Fip (k) Hip) |2 (k — d(k))

+2x(k+ 1)[ Slai]w(k')
z"'(k — d(k))[—0] B; — 07 EqFip(k)Hyplw (k)
w" (k)[-207 olw(k)],

By asumption (3), we have

E[AV; (k)] = E[z" (k)[-P — S1A; = $1E;Fio(k)Hiq

— ATST — HLFL(k)EiqST (k)
+ 25T (k)[S1 — S14; — S1E;oFo(k)Hig)z(k + 1)
+ 22" (k)[-S1B; — S1Eq Fy (k) Hip)x(k — d(k))
+ z(k+ 1)[Sy+ S =k + 1)

+ 2x(k + 1)[=S1B; — S1EiFip(k)

= 20—;1101']7

Hplz(k — d(k))

Applying Proposition 2.2, Proposition 2.3, condition (2) and
assumption (4), the following estimations hold

—S81EiFio(k)H;jo—HE FL(K)EL ST < S\ E;(o EL ST+ HE H,,
—22T (k)1 Ei Fia (k) Hiq(k + 1) <
2T (k)S1Ei EL ST 2(k) + 2(k + V)T HE Higw(k + 1),
—22" (k) Sy B Fi (k) Hipx(k — d(k)) <
2T (k)S1 B EL ST w(k) + 2(k — d(k)T HL Hypx(k — d(k)),
—227 (k +1)S1 B Fiy (k) Hipzx(k — d(k)) <

2T (k4+1)S, E EL ST w(k+1)+x(k—d(k) T HY Hypx(k—d(k)),

—oi (x(k), x(k — d(k)), k)o(x(k), z(k — d(k)), k) <
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pinxt (k) (k) + piox® (k — d(k))x(k — d(k).

Therefore, we have

E[AVi (k)] = E[zT (k)[-P — S14; —
+ 281 E;  EL ST
+ S1EwELST + Sy B EL ST
+ HEHyo + 2pin I (k)
+ 227 (K)[S1 — S1 Az (k + 1)
+ 22" (k)[-51B; — S2 Aile(k —d(k)) (8
+a(k+1)[S1 + ST + HL H,
+ S By ELST)x(k + 1)
+ 2x(k 4+ 1)[Sy — Sy Bjlz(k — d(k))

+ 2" (k — d(k))[2H, Hy,
+ 2pin Iz (k — d(k))],

ATST

The difference of V5 (k) is given by

k

>

i=k+1—d(k+1)

k—1
&’ (1)Qu (i)

- .
i=k—d(k)
k—d1
>

i=k+1—d(k+1)
+ 27 (k)Qa(k) — 2™ (k — d(k))Qu(k — d(k))

k—1
D>

i=k+1—dy

k-1
o7 ()Qx(i)]-

-

i=k-+1—d(k)

E[AV;(k)] = E| &’ (1)Qx (i)

=FE| 27 (1) Qx(i)

)

Since d(k) > d; we have

k—1 k—1
S 2T@)Qu() — > 2T()Qx() <0,
i=k+1—d, i=k+1—d(k)
and hence from (9) we have
k—dy
BAV(R<E[ Y 2"()Qux(i)

i=k+1—d(k+1)

" (k)Qu(k) — a™ (k — d(k)Qu(k — d(k))].
(10)
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The difference of V3(k) is given by

7d1+1

By Y

j——d2+2 = k+]
—di1+1

D 3D o

j=—do+21l=k+j+1
—d1+1 k—1

—H Y Y

j=—d2+2 I=k+j

k—1
- A ()Qz()

I=k+j

—a"(k+j—-1)Qu(k+j— 1)
—di+1

=Bl Y [T (k)Qu(k)

j=—d2+2
—aT(k+j—1D)Qu(k +j—1)]
= E[(dz — d1)a" (k)Qx (k)

k—dq
2" (7)Qz(j)].

15 22—

j=k+1—d2

E[AVs(k

(Qa(l) + 2T (k)Q(&)z(k)

(11)
Since d(k) < ds, and

k—dy

x

i=k=1—d(k+1)
we obtain from (10) and (11) that
E[AVa(k) + AVa(k)] < E[(d2 — di + 1)z” (k)Qz (k)
—al (k= d(k)Qx(k — d(k))].
Therefore, combining the inequalities (8), (12) gives

E[AV (k)] < Ela® (k) Jia(k) + 9" (k)W (k)),

k—dy

L

i=k+1—d2

' (1) Qx (i) — z' (1)Qx(i) <0,

12)

(13)

where

P(k) = [z(k)a(k+ 1) x(k — d(k))]",
Wiin Witz Wis
Wi=| x Wiy Wisl|,
* * Wiss
Winn =Q — P,
Wiia = 51 — S14;,
Wiz = =51 B;,
Wiog = P+ S + S{ + HZ;HZ‘Q + S1EibE3;Sf,
Wiaz = —51B;,
Wizs = —Q + 2H} Hyp, + 2po1,
and
Ji = (da—d1)Q—S1Ai—A] ST 428, Eio EL, ST +51 Ea B} ST
+H£Hia + 2p11]
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Therefore, we finally obtain from (13) and the condition (ii)
that

E[AV (k)] < ElzT (k) Jz(k)], Vi=1,2,..
k=0,1,2,..

7N5

We now apply the condition (i) and Proposition 2.1., the
system J; is strictly complete, and the sets «; and &; by (5)
are well defined such that

N
_U a; = R"\{0},

N

UJai=RrR"\{0}, aina; =0,i#j.

i=1
Therefore, for any x(k) € R", k = 1,2, ..., there exists i €
{1,2,...,N} such that z(k) € a;. By choosing switching
rule as y(x(k)) = ¢ whenever z(k) € @;, from the condition
(13) we have

E[AV (k)] < E[2T (k) Jiz(k)] <0, k=1,2,..,

which, combining the condition (6), Definition 2.3 and the
Lyapunov stability theorem [16], concludes the proof of the
theorem in the mean square.

IV. CONCLUSION

This paper has proposed a switching design for the robust
stability of uncertain stochastic switched discrete time-delay
systems with interval time-varying delays. Based on the dis-
crete Lyapunov functional, a switching rule for the robust
stability for the uncertain stochastic switched discrete time-
delay system is designed via linear matrix inequalities.
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Abstract—This paper is concerned with exponential stability
of switched linear systems with interval time-varying delays.
The time delay is any continuous function belonging to a given
interval, in which the lower bound of delay is not restricted to
zero. By constructing a suitable augmented Lyapunov-Krasovskii
functional combined with Leibniz-Newton’s formula, a switching
rule for the exponential stability of switched linear systems with
interval time-varying delays and new delay-dependent sufficient
conditions for the exponential stability of the systems are first
established in terms of LMIs.

I. INTRODUCTION

Switched time-delay systems have been attracting consid-
erable attention during the recent years [1-10], due to the
significance both in theory development and practical appli-
cations. However, it is worth noting that only the state time
delay is considered, and the time delay in the state derivatives
is largely ignored in the existing literature. If each subsystem
of a switched system has time delay in the state derivatives,
then the switched system is called switched neutral system
[10-14]. Switched neutral systems exist widely in engineering
and social systems, many physical plants can be modelled as
switched neutral systems, such as distributed networks and
heat exchanges. For example, in [11-16], a switched neutral
type delay equation with nonlinear perturbations was exploited
to model the drilling system. Unlike other systems, the neutral
has time-delay in both the state and derivative. However, it is
well-known that time-delay in the system may be a source of
instability or bad system performance. Thus many researchers
try to study them to find stability criteria for such system
with time-delay to be stable.Most of the known results on this
problem are derived assuming only that the time-varying delay
h(t) is a continuously differentiable function, satisfying some
boundedness condition on its derivative: i(t) < § < 1. This
paper gives the improved results for the exponential stability
of switched linear systems with interval time-varying delay.
The time delay is assumed to be a time-varying continuous
function belonging to a given interval, but not necessary to be
differentiable. Specifically, our goal is to develop a construc-
tive way to design switching rule to the exponential stability
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of switched linear systems with interval time-varying delay.
By constructing argument Lyapunov functional combined with
LMI technique, we propose new criteria for the exponential
stability of the switched linear system. The delay-dependent
stability conditions are formulated in terms of LMIs.

The paper is organized as follows: Section II presents def-
initions and some well-known technical propositions needed
for the proof of the main results. Delay-dependent exponential
stability conditions of the switched linear system are presented
in Section III.

II. PRELIMINARIES

The following notations will be used in this paper. R™
denotes the set of all real non-negative numbers; R™ denotes
the n—dimensional space with the scalar product (.,.) and

the vector norm | . ||; M™*" denotes the space of all
matrices of (n x r)—dimensions; AT denotes the transpose
of matrix A; A is symmetric if A = AT: T denotes the

identity matrix; A\(A) denotes the set of all eigenvalues of A;
Aminmax (A) = min/max{ReX\; A € \(4)}; x = {z(t + s) :
s [=h. O} lleell = supscngy | =(t + ) [: C(0, 1], R")
denotes the set of all R™—valued continuous functions on
[0,¢]; Matrix A is called semi-positive definite (A > 0) if
(Az,z) > 0, for all x € R"; A is positive definite (4 > 0)
if (Az,x) > 0 for all z # 0; A > B means A — B > 0.
denotes the symmetric term in a matrix.

Consider a linear system with interval time-varying delay
of the form

@(t) = Ayx(t) + Dyx(t — h(t)), t€RT, W
SC(t) = ¢(t)7t € [7h230]7
where x(t) € R™ is the state; v(.) : R* — N =
{1,2,...,N} is the switching rule, which is a function

depending on the state at each time and will be designed.
A switching function is a rule which determines a switching
sequence for a given switching system. Moreover, v(z(t)) = i
implies that the system realization is chosen as the i*" system,

1 =1,2,...,N. It is seen that the system (1) can be viewed as



an autonomous switched system in which the effective subsys-
tem changes when the state x(t) hits predefined boundaries.
Ay D; € M™" ¢ =1,2,...,N are given constant matrices,
and ¢(t) € C([—h2,0], R™) is the initial function with the
norm

[ ¢ = supsei_ny0p I #(s) [l; The time-varying delay
function h(t) satisfies

0<hy <h(t)<hy, te€R".

The stability problem for switched system (1) is to construct
a switching rule that makes the system exponentially stable.

Remark 2.1. It is worth noting that the time delay is a
time-varying function belonging to a given interval, in which
the lower bound of delay is not restricted to zero.

Definition 2.1. Given « > 0. The switched linear system (1)
is a—exponentially stable if there exists a switching rule ~(.)
such that every solution z(t,¢) of the system satisfies the
following condition

INS0: |2t g) €N | 6 ||, Vi€ R,

We end this section with the following technical well-known
propositions, which will be used in the proof of the main
results.

Definition 2.2. The system of matrices {J;},i = 1,2,..., N,
is said to be strictly complete if for every x € R™\{0} there
isi€{1,2,..., N} such that 27 J;z < 0.

It is easy to see that the system {.J;} is strictly complete if

and only if
N

U = R"\{0},

=1

where

o, ={zreR": z'Jr<0},i=12,..N.

We end this section with the following technical well-known
propositions, which will be used in the proof of the main
results.

Proposition 2.1. [17] The system {J;},i = 1,2,...

is strictly complete if there exist 6; > 0,1
1,2,...,N, Zf\il 0; > 0 such that

N
i=1

If N = 2 then the above condition is also necessary for the
strict completeness.

7N7

Proposition 2.2. (Cauchy inequality) For any symmetric
positive definite marix N € M"™*™ and a,b € R"™ we have

+a’b <a"Na+b"N"1b.
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Proposition 2.3. [18] For any symmetric positive definite
matrix M € M"™*", scalar v > 0 and vector function
w : [0,7] = R™ such that the integrations concerned are
well defined, the following inequality holds

([ e ([ )
o[ wr e as).

Proposition 2.4. [19] Let E,H and F be any constant
matrices of appropriate dimensions and FTF < I. For any
€ > 0, we have

EFH+ H'FTET <¢EET + ¢ 'HTH.

Proposition 2.5. (Schur complement lemma [20]). Given con-
stant matrices X,Y, Z with appropriate dimensions satisfying
X=X"Y =YT >0 Then X +Z"Y~'Z < 0 if and only

if
G Z7 -Y Z
(Z —Y) <0 or (ZT X) < 0.
III. MAIN RESULTS
Let us set
My Mip Mg Myg Mis
2 Moo 0 Moy S
Mi=| * * Mz Mz S3 |,
& * * . Myy Mys
* * * * Ms5
Ji=Q 814~ ATST), @
ay={zeR": 'Jzx<0}, i=12,..,N,

i—1
o] = aq, di:ai\Ud]'7 i=2,3,...,N,
j=1

A1 = Amin(P),
A2 = Amax (P) + 272 Amax (@),
My = AP+ PA; +2aP + Q,
Mg = —S9A;, Mz = —S34;,
My = PD; — S1D; — S4A;, Mis =51 — S54i,
Moy = —e72MQ, My = —S3D;,
Mss = —e ?*"2Q,  Mzy = —S3D;,
Myy = =S4D;,  Mys =Sy — S5Ds,
Mss = S5 + S;

The main result of this paper is summarized in the following
theorem.
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Theorem 1. Given o > 0. The zero solution of the
switched linear system (1) is a—exponentially stable if there
exist symmetric positive definite matrices P,Q, and matrices
Si,t=1,2,...,5 such that satisfying the following conditions
()36, >0,i=1,2,...,N, SN 8 >0: " 6Ji<0.

(i) M; <0, i=1,2,..,N.

Moreover; the solution x(t, $) of the system satisfies

A —
| z(t, ¢) ||< \/fe tlgll, Ve R

Proof. We consider the following Lyapunov-Krasovskii func-
tional for the system (1)

V(ta xt) . Z ‘/i,

where

Vi = 2T (t) Px(t),
t
Va :/ 20T (5)Qu(s) ds,
t—hq
t
Vs =/ 22— T (5)Qu(s) ds.
t—hz
It easy to check that
M @) [PS V(e < Xe || e |, 220, (3)

Taking the derivative of V; along the solution of system (1)
we have

22T (t) Pi(t)
_2xT(t)[AfP + A;Pla(t) + 22T (t) PD;z(t — h(t));
=T ()Qu(t) — e 22T (t — hy)Qu(t — hy) — 2aV5;
V3 =27 ()Qu(t) — e 222 T (t — hy)Qu(t — hy) — 2aV3.

Therefore, we have
V() +2aV () <227 (t)[AL P + A;P 4 2aP 4 2Q)]x(t)
+ 227 (t)PD;x(t — h(t))
— e 2maT(t — h))Qux(t — hy)

— e 20h2 T (1 — hy)Qu(t — hy).
“)

By using the following identity relation

i(t) — A (t) — Diz(t — h(t)) =0,

234

we have

2T (1) Sy (t) — 227 (1)S1 A (t)
— 227 (£)S1 Dz (t — h(t)) =0
22T (t — hy)Sod(t) — 227 (t — hy)Sa Az ()
— 227 (t — h1)Sa Dz (t — h(t)) =0
22T (t — ho)Ssi(t) — 22T (t — hy)S3 Az (1)
— 227 (t — ho)S3Dyx(t — h(t)) =0
22T (t — h(t))Ssd(t) — 227 (t — h(t))SsAsz(t)
— 227 (t — h(t))SyDsx(t — h(t)) =0
&1 (£)Ssa(t) — 227 (1) S5 A (t)
— 2¢T(t)Ss Dy (t — h(t)) =0

)

Adding all the zero items of (5) into (4), we obtain

V() 422V () < 2T ®[ATP +PA; + 2aP — 1 A;
— A7 ST +2Q)z(t)
+ 227 (t)[e7 2R — Sp A)a(t — hy)
+ 227 (t)[~S3 Ailz(t — ho) + 227 ()[PD;

— 81D, — S4A;lx(t — h(t))
+2wT( )[S1 = S5 Aé(t)
+a’(t — h)[= e‘“’“@] (t—h1)
493 ( h1)[=S2D;]x(t — h(t))
+2z" (t — h1) S ( )
+a (t — hg)[—e~2*"2Qla(t — ho)
+ 2T(t — hy)[=S3D;]z(t — h(t))
+ 22T (t = hy)Ssi(t)
+ (, — h(t))[—SaD;]z(t — h(t))
4+ 22T (t — h(t))[Sy — SsD;)i(t)

&T (8)[S5 + S5 i (t)
=27 (1) Ji(t) + ¢T () M((),

(6)
where
C(t) = [z(t), x(t — ha), z(t — ha),z(t — h(t)), 2(t)],

Ji=Q— S14; — AT ST,
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My Mz Mz My Mis
x My 0 My S
M= * * Mz Msy S3 |,
* * * Mys Mys
* * * * Mss

My = ATP + PA; +2aP + Q,

Mg = —S524;, Mz = —S34;,

Myy = PD; — 51D; — S4A;, M5 =51 — S5 A;,
Moy = —e72°MQ, My = =S5 D;,

Msz = —e 2*"2Q, My = —S5D;,

Myy = —54D;, Mys =Sy — S5 D,

Mss = S5+ S7.

Therefore, we finally obtain from (6) and the condition (ii)
that

V() +2aV() <zt (t)Ja(t), Vi=1,2,...N, teR".

We now apply the condition (i) and Proposition 2.1., the
system J; is strictly complete, and the sets «; and &; by (2)
are well defined such that

U a; = R"\{0},

N
Ja =R"\{0}, aina; =0,i+j.
i=1
Therefore, for any z(t) € R", t € R', there exists ¢ €
{1,2,...,N} such that z(t) € @;. By choosing switching
rule as y(x(t)) = ¢ whenever v(x(t)) € a;, from (6) we have

< zT(t)Jz(t) <0, teRY,

V() +2aV(.)

and hence

V(t,r) < —2aV(tzy), Vte RT. @)

Integrating both sides of (7) from 0 to ¢, we obtain
V(t,ze) < V(p)e >, Vit e RT.
Furthermore, taking condition (3) into account, we have

MLzt 0) [P< Vi) < Vi(g)e ™ < dge 20| ¢ |2,

then
)\2 —at —+
| z(t, ¢) 1< 3 loll, teR™,

which concludes the proof by the Lyapunov stability theorem
[21].

IV. CONCLUSION

This paper has proposed a switching design for the expo-
nential stability of switched linear systems with interval time-
varying delays. Based on the improved Lyapunov-Krasovskii
functional, a switching rule for the exponential stability for
the system is designed via linear matrix inequalities.
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Introduction

In this paper, we investigate the guaranteed cost control for
Hopfield delayed neural networks problem. The novel features here
are that the delayed neural network under consideration is with
various globally Lipschitz continuous activation functions, and the
time-varying delay function is interval, non-differentiable. A
nonlinear cost function is considered as a performance measure for
the closed-loop system. The stabilizing controllers to be designed
must satisfy some exponential stability constraints on the
closed-loop poles. Based on constructing a set of augmented
Lyapunov-Krasovskii functionals combined with Newton-Leibniz
formula, new delay-dependent criteria for guaraneed cost control
via memoryless feedback control is established in terms of LMls,
which allow simultaneous computation of two bounds that
characterize the exponential stability rate of the solution and can
be easily determined by utilizing MATLABs LMI Control Toolbox.

Grienggrai Rajchakit Guaranteed cost control for Hopfield neural networks with intel



Main Results

Consider the following Hopfield neural networks with interval
time-varying delay:

x(t) = = Ayeyx(t) + Woy o) (x(1)) + Way(r)g(x(t — h(1)))
+ Bw(t)u(t), t>0, (1)
x(t) = (1), t € [, 0],

where x(t) = [x1(t), x2(t), ..., xa(t)]"T € R” is the state of the
neural, u(.) € L2([0, t],R™) is the control; n is the number of
neurals, and

f(X(t)) - [fl(Xl(t))ﬂ f2(X2(t))7 - fn(Xn(t))]Tv
g(x(t)) = [g1(x(t)), &20x2(1)); - - -, galxa( )],

are the activation functions:
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Main Results

A = diag(a1, a2,...,an), a; > 0 represents the self-feedback term;
B € R™ ™ is control input matrix; Wy, Wi denote the connection
weights, the discretely delayed connection weights and the
distributively delayed connection weight, respectively; The
time-varying delay function h(t) satisfies the condition

0 < ho < h(t) < hy,

The initial functions &(t) € CY([—h1,0], R™), with the norm

oIl = Supte[-hl,o]\/||¢(t)”2 + llé(2)112.

In this paper we consider various activation functions and assume
that the activation functions f(.), g(.) are Lipschitzian with the
Lipschitz constants f;,e; > 0 :

Guaranteed cost control for Hopfield neural networks with intel
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Main Results

|fl(€1) - fl(f?)‘ S f;|§1 O 62‘7 — 1727 ey n7v€17£2 € ]R7

. (2)
|g/(§1) - g/(£2)| S ei|§1 i 52‘7 ! 5@ 1727 sy n7v€17§2 S ]R7
The performance index associate with the system (1) is the
following function
J= [0, x(¢ - (e, u(©)et, 3)
0

where fO(t, x(t), x(t — h(t)), u(t)) : Rt x R" x R" x R™ — Rt is
a nonlinear cost function satisfies

3(?17 Q27 R: fo(taxay7 U) S QlX7X+ Q2y7)/+ RU, u, (4)
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Main Results

for all (t,x,u) € R" x R" x R™ and Q1, @, € R™" R € R™*m
are given symmetric positive definite matrices. The objective of
this paper is to design a memoryless state feedback controller
u(t) = Kx(t) for system (1) and the cost function (3) such that
the resulting closed-loop system

X(t) = (A+ BK)x(t) + Wof(x(t)) + Wig(x(t — h(z))),  (5)

is exponentially stable and the closed-loop value of the cost
function (3) is minimized.
Definition 1 Given «e > 0. The zero solution of closed-loop system
(5) is a—exponentially stabilizable if there exist a positive number
N > 0 such that every solution x(t, ®) satisfies the following
condition:

| x(t,0) I< Ne™* || ¢ ]|, Ve > 0.
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Definition 2 Consider the control system (1). If there exist a
memoryless state feedback control law u*(t) = Kx(t) and a
positive number J* such that the zero solution of the closed-loop
system (5) is exponentially stable and the cost function (3) satisfies
J < J*, then the value J* is a guaranteed costant and u*(t) is a
guaranteed cost control law of the system and its corresponding
cost function.We introduce the following technical well-known
propositions, which will be used in the proof of our results.
Proposition 1(Schur complement lemma [17]). Given constant
matrices X, Y, Z with appropriate dimensions satisfying
X=XT",Y=YT >0.Then X +ZTY"1Z < 0if and only if

X
S Ty) <o
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Proposition 2(Integral matrix inequality [18]). For any symmetric
positive definite matrix M > 0, scalar v > 0 and vector function
w : [0,7] — R" such that the integrations concerned are well
defined, the following inequality holds

</07w(s) ds) TM(/OVM(S) ds) §7</07wT(s)l\/lw(s) ds>

In this section, we give a design of memoryless guaranteed
feedback cost control for neural networks (1). Let us set

1
Wiy = =[P+ al]A—AT[P + al] = 2BBT + 0.25BRB” + ) _ G,
i=0

Wi = P+ AP +05BB,
Wiz = e 2*MHy +05BB" + AP,

Grienggrai Rajchakit Guaranteed cost control for Hopfield neural networks with intel



Design of guaranteed cost controller

Main Results

Wis = 2e 2" H, +0.5BB" + AP,

Wis = PO.5BBT + AP,
1 1

Way = Z W;D; W, + Z h?H; 4 (hy — ho)U — 2P — BB,
i=0 i=0

Wy =P, Wa=P, Wy=P,

1
W33 — _e*2ah0 GO . e~2ah0 HO — e—ZOzhl U -+ Z VV,D, VVI'T,
i=0
Wzs =0, Wszs = —-2ahU,
1
W44 — Z VV,D, VV,-T _ 672ah1 U — 672ah1 Gl _ ef2ah1 Hl,
i=0
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Was = e~ U,

Wes = —e MU + WoDo Wy,

E =diag{ej,i=1,...,n}, F =diag{fi,i=1,..., n},
AL = Amin(P7H),

il
)\2 = )\max(P_l) g hO)\max[P_l(Z Gi)P_l]
i=0
1
+ W Amax[ PO~ H)PTY o (b — ho)Amax(PT1UPTY).
i=0

Guaranteed cost control for Hopfield neural networks with intel

Grienggrai Rajchakit



Design of guaranteed cost controller

Main Results

Theorem 1 Consider control system (1) and the cost function (3).
If there exist symmetric positive definite matrices

P, U, Gg, G1, Hy, Hy, and diagonal positive definite matrices

D;,i = 0,1 satisfying the following LMlIs

W11 W12 W13 W14 |/V15

x Wy Wh Wi Wi
* *  Was Way Was| <0, (6)
* * * W44 W4 5
* * * * Wes
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—PA—-ATP — z _ge 2%hiH; 2PF  PQ
—Dy 0 <0, (7)

* * —Ql_l
Wi Dy WlT — e 2oy DJPE PQ>
* —D; 0 <0, (8)
* —Q2_1
then
u(t) = —%BTP’lx(t), £30. (9)

is a guaranteed cost control and the guaranteed cost value is given
by
2
J7 = Xallol"
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Moreover, the solution x(t, ¢) of the system satisfies

I x(t, ) {I< \/Tl el vtxo.

Proof. Let Y = P~1 y(t) = Yx(t). Using the feddback control (5)
we consider the following Lyapunov-Krasovskii functional

6

V(t,Xt) = Z Vi(t?Xt)a

xT(£) Yx(t), I
/ o(s=8)xT(s) YGo Yx(5s) ds,
o=,

A=) xT(s)YGy Yx(s) ds
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0 t
Vi = ho / / 23T (1) YHo Yx(7) d7 ds,
—hg Ji+s
0 t
Vs = hy / / T3 T (1) YH, Y x(7) dT ds,
—hy Jt+s
t—hg t
Ve = (h1 — ho) / / U= T (1) YUY x(7) dT ds.
Jt—h; t-+s

It easy to check that

ML x(e) [P< V(Ex) < X2 [ xe |IP, Ve >0, (10)
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Taking the derivative of V;,1,2,...,6, we have
Vi =2xT(t) Yx(t)
=y (t)[-PAT = APly(t) -y "(£)BBTy(t)
+2y T(OWof (Jy (1) + 2y (£)Wag()y (1)
Vo =y T () Goy(t) — e >*"y " (t — ho) Goy(t = ho) — 2aVs;
Vs =y T (t)Gry(t) — e 2MyT(t — h)Gry(t = hy) — 2a Vs;

. t
Vs =h3y T (t)Hoy(t) — hye 2eho / xT(s)Hox(s) ds — 2aVy;
t—hg

i
Vs =h2y T (t)Hyy(t) — hpe=2%Mm / v (s)Hiy(s) ds — 2aVs;
t—hy
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Ve =(h — ho)?y T (t)Uy(t)

t—ho
— (hy — ho)e 2eMm / v (s)Uy(s) ds — 2o V.
t—hy
we obtain
V() +2aV(.) <CT(REL) +y T (1)S1y(t)
+y " (&= h(1))Say(t — h(t)) (11)

— O, x(t), x(t — h(t)), u(t))
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where
C(t) = [Y(t)v)I/(t)aY(t Ca hO)ay(t — hl)ay(t ) h(t))v f(')vg(')]v and

Wipn Wi Wiz Wiy Wis

x  Wa Wi Woy Wos
E=| * *  Waz Wz Was
* * * W44 W4 5
* * * * W5 5

1
S1=—PA—ATP =" e 2*MiH; + 4PFDy ' FP + PQ: P,
i=0

S = WADI1 W, — e 2 + 4PED; 'EP + PQ,P.
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Note that by the Schur complement lemma, Proposition 1, the
conditions S; < 0 and Sy < 0 are equivalent to the conditions (7)
and (8), respectively. Therefore, by condition (6), (7),(8), we
obtain from (11) that

V(t,x:) < —2aV/(t,x;), Yt >D0. (12)
Integrating both sides of (12 ) from 0 to ¢, we obtain
V(t,x:) < V(p)e 2t Yt >0.

Furthermore, taking condition (10) into account, we have
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Ml x(t,0) 7S Vx) < V(9)e™2 < doe™ || ¢ |12,

MR
| () 1< /5 e ‘el €20,

which concludes the exponential stability of the closed-loop system
(5). To prove the optimal level of the cost function (3), we derive
from (11) and (6) - (8) that

then

V(t,z:) < —FO(t,x(t), x(t — h(t)), u(t)), t>0. (13)

Integrating both sides of (13) from 0 to t leads to
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t
/ FO(t, x(t), x(t—h(t)), u(t))dt < V(0,z) = V(t,z) < V(0, z0),
0
dute to V/(t,z) > 0. Hence, letting t — 400, we have
J= / FO(t, x(t), x(t= h(t)), u(t))dt < V(0,20) < \o||§|? = J*.
0

This completes the proof of the theorem.
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Example 1 Consider the neural networks with interval time-varying
delays (1), where

M R |

0 03 03 -03 02 —04 0.2
03 0 02 0 02 0.1 0.3 0.2
E= [0 0.4] F = [o 0.3] 43 4 [0.1 0.4] Q2 = [0.2 0.5] ’
0.1 0.
R=lov03):

h(t) = 0.1+ 1.1sin’t if t €T =U,so[2km, (2k + 1)7]
h(t) =0 if teRT\Z,
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Note that h(t) is non-differentiable, therefore, the stability criteria
proposed in [5, 6, 7, 12, 15] are not applicable to this system.
Given o« = 0.3, hp = 0.1, h = 1.2, by using the Matlab LMI
toolbox, we can solve for P, U, Gy, G1, Hy, H1, Dy, and D; which
satisfy the conditions (3.1)-(3.3) in Theorem 1 A set of solutions

are
p_ | 24272 —0.2546] U~ | 73269  —0.1820
~ |-0.2546 13172 |° ~  |-0.1820 7.6681 |’
G — [4.4596  0.0397] 2 [5.2694 0.0114]
0~ 10.0397 4.2369]" 7' [0.0114 5.0125]°
o — [4.6455  0.0452] A [5.3005 0.0233]
07 |0.0452 45104 "7 [0.0233 5.2306]°
p._[6001L 0 ], [57809 0 ]
°~| o 60011 T'T | 0o 57809
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Then
u(t) = —0.0292x (t) — 0.0816xx(t), t > 0

is a guaranteed cost control law and the cost given by

J* =15.4631||2.

Moreover, the solution x(t, ¢) of the system satisfies

Ix(t, &)l < 0.1614e=03¢ flg]} V't > 0.
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Conclusions

In this paper, the problem of guaranteed cost control for Hopfield
neural networks with interval nondifferentiable time-varying delay
has been studied. A nonlinear quadratic cost function is considered
as a performance measure for the closed-loop system. The
stabilizing controllers to be designed must satisfy some exponential
stability constraints on the closed-loop poles. By constructing a set
of time-varying Lyapunov-Krasovskii functional combined with
Newton-Leibniz formula, a memoryless state feedback guaranteed
cost controller design has been presented and sufficient conditions
for the existence of the guaranteed cost state-feedback for the
system have been derived in terms of LMIs.
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